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Physiological responses of Allium cepa var. agrogarum L. plants to Cadmium stress 
Respuestas fisiológicas de plantas de Allium cepa var. agrogarum L. al estrés por cadmio 

Wang QL, DH Liu, JY Yue

Resumen. El propósito de este estudio fue determinar los efectos 
de varias concentraciones de Cd (0, 1, 10, 100, y 300 µM CdCl2 
en plantas de Allium cepa var. agrogarum L. Para alcanzar esta meta 
examinamos (1) la dinámica del flujo de Cd2+ en la rizósfera, (2) el 
particionamiento de Cd entre las raíces y las hojas, (3) la formación 
de especies reactivas al oxígeno (ROS), (4) niveles de H2O2 y clo-
rofila, y (5) la movilización de varios micro- y macronutrientes. Un 
elevado influjo de Cd2+ neto se observó en el ápice radical después 
de la exposición a 100 µM Cd por 24 h. La exposición a 1 o 10 µM 
Cd por 96 h no presentó una influencia evidente en el crecimiento 
radical. Sin embargo, los tratamientos con 100 a 300 µM Cd por 72 
h inhibieron significativamente el crecimiento radical. Los niveles de 
ROS se incrementaron en hojas y raíces con aumentos en las con-
centraciones de Cd. La concentración de pigmentos fotosintéticos, 
excepto los carotenoides el día 4, se incrementó con aumentos en las 
concentraciones de Cd y duración del tratamiento. La acumulación 
de Cd disminuyó la asimilación de C fotosintético pero no tuvo efec-
tos en los modelos diurnos. El Cd se acumuló en las raíces y en las 
hojas, pero se detectó un mayor contenido en las raíces que en las ho-
jas. Varios macro- y micronutrientes mostraron respuestas específicas 
del tejido y a la concentración de Cd.

Palabras clave: Toxicidad del Cadmio (Cd); flujo neto de cad-
mio; ICP; Estrés oxidativo; Fotosíntesis.

Abbreviations: Cd: Cadmio; NRAMP: Proteínas de macrófagos 
asociadas con resistencia natural; ICP-AES: análisis de espectrome-
tría de emisión atómica-plasma asociada inductivamente; LSD: dife-
rencia mínima significativa; PSII: Fotosistema II; NMT: Técnica de 
micro-prueba no invasiva; ROS: especies reactivas al oxígeno.

Abstract. This study aimed to determine the effects of different 
Cd concentrations (0, 1, 10, 100, and 300 µM CdCl2) on Allium 
plantlets. To achieve this goal, we examined the (1) dynamics of Cd2+ 
flux in the rhizosphere, (2) partitioning of Cd between roots and 
leaves, (3) formation of reactive oxygen species (ROS), (4) levels of 
H2O2 and chlorophyll, and (5) translocation of several macro- and 
micronutrients. A strong net Cd2+ influx was observed in the root 
apex after exposure to 100 µM Cd for 24 h. Exposure to either 1 or 
10 µM Cd for 96 h presented no evident influence on root growth. 
However, treatments with 100 to 300 µM Cd for 72 h significantly 
inhibited root growth. ROS levels increased in roots and leaves with 
increasing Cd concentrations. The concentration of photosynthetic 
pigments, except for carotenoids on day 4, increased with increas-
ing Cd concentrations and treatment duration. Cd accumulation 
decreased photosynthetic carbon assimilation but exerted no effects 
on diurnal patterns. Cd accumulated in roots and leaves, but a larger 
content was detected on roots than on leaves. Several macro- and 
micronutrients showed tissue- and concentration-specific responses 
to Cd. 

Keywords: Cadmium (Cd) toxicity; Net cadmium flux; ICP; 
Oxidative stress; Photosynthesis.

Abbreviations: Cd: Cadmium; NRAMP: natural resistance-
associated macrophage proteins; ICP-AES: inductively coupled 
plasma-atomic emission spectrometry analysis; LSD: the least sig-
nificant difference; PSII: photosystem II; NMT: Non-invasive Mi-
cro-test Technique; ROS: reactive oxygen species.
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INTRODUCTION
Heavy metal (e.g., Cd) contamination due to anthro-

pogenic activities, such as mining, urban traffic, burning of 
fossil fuels, and phosphate fertilizer production, is a serious 
environmental problem worldwide (McLaughlin et al., 2000; 
Zhang & Wong, 2007; Ikenaka et al., 2010; Liu et al., 2011). 
Cd is nonessential but biologically toxic; particularly, high Cd 
concentrations in the soil are phytotoxic (Schutzendubel & 
Polle, 2002; He et al., 2011; Rascio & Navari-Izzo, 2011). The 
capacity of this metal to enter the cell through the existing 
mineral uptake machinery also constitutes a serious threat to 
human health (Peralta et al., 2009; Straif et al., 2009; Lin & 
Aarts, 2012). Cd entry to root cells is the first key process for 
phytoremediation, but only a few reports have described the 
dynamics of Cd2+ flux along the roots in monocots by using 
ion-selective microelectrodes (He et al., 2011). In particular, 
insufficient information is available about the dynamics of 
Cd2+ flux in the rhizosphere of Allium plants.

Cd exposure inhibits plant growth by reducing mitotic ac-
tivity, inducing chromosomal aberrations, and causing toxic-
ity to nucleoli in the apical meristem (Liu et al., 2003/2004; 
Zhang et al., 2009; Qin et al., 2010). Cd also disturbs plant 
physiology and metabolism of plants by altering Chlorophyll 
a and b (Chl a and b) contents (Mobin & Khan 2007; He et 
al., 2011); reducing net photosynthetic rate, stomatal conduc-
tance, and leaf transpiration (Souza et al., 2011); and dam-
aging macromolecules, which mainly include proteins, lipids 
(Skorzynska-Polit & Krupa 2006), and DNA (Li et al., 2005; 
Cambier et al., 2010). Moreover, Cd induces mitochondrial 
damage and triggers cell death through apoptosis or necrosis 
(Thijssen et al., 2007). However, most studies on Cd toxicity 
and detoxification mechanisms focused on Cd-hyperaccu-
mulating plants that have developed different mechanisms to 
cope with Cd; such plants include Thlapsi caerulescens (Lombi 
et al., 2002), Arabidopsis halleri (Bert et al., 2002; Weber et al., 
2006; Zhao et al., 2006; Gallego et al., 2012), Thlaspi praecox, 
and Sedum alfredii (Van de Mortel et al., 2008). These studies 
provided valuable insights into the metal homeostasis mecha-
nisms of plants to regulate the cellular concentrations of metal 
ions (Gallego et al., 2012). However, evidence regarding the 
mechanisms by which metal-sensitive species such as Allium 
cepa reduce the negative consequences of metal toxicity is in-
sufficient. Some studies gathered information on the coping 
mechanisms of A. cepa with heavy metals (Liu et al., 1995; Qin 
et al., 2010), but data on the response of A. cepa var. agrogarum 
L. to Cd stress are limited.

As a useful biomarker for environmental monitoring, A. 
cepa var. agrogarum L. was selected to investigate the dynam-
ics of Cd2+ flux in the rhizosphere and to explore the plant 
internal partitioning of Cd and other minerals (Ca, Mg, Fe, 
Mn, and Zn) between roots and leaves. This investigation was 
conducted in relation to energy metabolism; reactive oxygen 

species (ROS) formation; antioxidant, chlorophyll, and carot-
enoid concentrations; and photosynthetic characteristics. The 
findings of this study provided insights into the molecular 
mechanisms of Allium seedlings in response to Cd stress.

MATERIALS AND METHODS
Plant material, germination and cadmium treat-

ment. Healthy and equal-size onion bulbs (Allium cepa var. 
agrogarum L.) were chosen. The bases of bulbs remained sub-
merged in water to produce roots at 25 °C. When the roots 
reached about 1.0 cm in length, the germinated bulbs were 
transferred into the 1/4 Hoagland’ nutrient solution which 
was exchanged at 1 day intervals. After roots were approxi-
mately 3 cm long, they were exposed to 0, 1, 10, 100 or 300 
µM CdCl2 concentrations in the nutrient solution. A parallel 
culture was grown without subcultivation at 25 °C as a posi-
tive control.

Macroscopic observations were made at the end of 4, 8 and 
12 days. In each treatment, 5 plants were examined, and root 
and leaf lengths were measured every 4 days.

Measurement of net Cd2+ flux in roots. To monitor net 
Cd2+ flux in roots of Allium cepa var. agrogarum L. exposed to 
100 µM CdCl2, white fine roots from 3-day-old plants were 
selected. The net Cd2+ flux was measured non-invasively by 
using the Non-invasive Micro-test Technique (the NMT 
system BIO-IM; Younger USA, LLC, Amherst, MA) at the 
company (Xuyue Science & Technology Co., Ltd. Beijing, 
China). The NMT system and its application on ion flux de-
tection were described in detail (Pineros et al., 1998; Farrell 
et al., 2005; Xu et al., 2006; Ma et al., 2010). Briefly, the ion-
selective microelectrode with an external tip (ca. 2-4 µm in 
diameter, YoungerUSA) was manufactured and silanized with 
tributylchlorosilane, and the tip was backfilled with a commer-
cially available ion-selective cocktail (Cadmium Ionophore I, 
20909, Sigma-Aldrich, St Louis, MO). Prior to the net Cd2+ 
flux measurement, the microelectrode was calibrated in 50 
and 500 µM Cd2+ and only electrodes with Nernstian slopes 
more than 25 mV per 10 times concentration difference were 
used. Three fine roots per plant (eight plants in total) were 
used for this analysis. The white fine roots excised from plants 
exposed to 100 µM CdCl2 for 24 h were immediately trans-
ferred to a Petri dish containing 5 mL of a measuring solution 
(0.1 mM CdCl2; 0.05 mM KCl, 0.25 mM NaCl, 0.15 mM 
MES and 0.1 mM Na2SO4, pH 6.0). To determine the appro-
priate point for measurement along the root tip, a preliminary 
experiment was carried out with an initial measurement at the 
root tip followed by 400 µm walk steps (Fig. 1A). Gradients of 
Cd2+ near to the root surface (ca. 2–5 µm) were measured by 
moving the Cd2+-selective microelectrode between two posi-
tions (with a distance of 30 µm) in perpendicular direction 
to the root surface. The recording rate for Cd2+ flux was 10 
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readings per 64 s. The Cd2+ flux was recorded for a period of 
4 min. Acquisition of root images and processing of Cd2+ flux 
data were performed with an IM-FLUX software attached to 
the NMT system. )
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Fig. 1. Root tip (A) and net Cd2+ flux along the root tip (B) of Al-
lium cepa var. agrogarum L. after exposure to 100 μM CdCl2 for 
24h (Bar=100 μm). Symbols are means ± SE (n=6). The negative 
values indicate Cd2+ influx. Net Cd2+ flux in roots was measured 
non-invasively by using NMT (for details see the text).
Fig. 1. Ápice radical (A) y flujo neto de Cd2+ a lo largo del ápice radical 
(B) de Allium cepa var. agrogarum L. después de la exposición a 100 
μM CdCl2 durante 24 h (Barra=100 μm). Los símbolos son promedios 
± SE (n=6). Los valores negativos indican el influjo de Cd2+. El flujo 
neto de Cd2+ en las raíces se midió en forma no invasiva usando NMT 
(ver el texto por detalles). 

Determination of O2
– and H2O2. We measured O2

– con-
tent in plant materials using the aerated method following 
Lei et al. (2006). Samples (0.2 g) were ground in liquid nitro-
gen. The obtained powder was suspended in 1 mL of 50 mM 
potassium phosphate buffer (pH 7.8) and then centrifuged 
(10000 g, 4 °C, 20 min). A 1 mL aliquot of the supernatant 
was mixed with 1 mL of 1 mM hydroxylamine hydrochloride. 
Subsequently, the reaction mixture was incubated at 25 °C for 
60 min prior to adding 1 mL of 17 mM p-aminobenzene sul-
fonic acid and 1 mL of 7 mM α-naphthylamine. After further 
incubation (25 °C, 20 min), the absorbance of the mixture was 
spectrophotometrically recorded at 530 nm. 

The concentration of H2O2 in plant materials was analyzed 
as described by Lei et al. (2007). The obtained fine powder of 
fresh tissues (0.2 g) was extracted in 1 mL of acetocaustin and 
then centrifuged (10000 g, 4 °C, 20 min). The supernatant 
was discarded, and the pellet was dissolved in 3 mL of 2 M 

H2SO4. Absorbance was spectrophotometrically recorded at 
415 nm.

Photosynthetic pigments analysis. To determine chloro-
phyll and carotenoid concentration on leaves, fine powder of 
fresh leaves (0.2 g) was extracted for 24 h in 8 mL of 80% ac-
etone in darkness. The concentrations of chlorophyll a, chlo-
rophyll b and carotenoids in the extracts were determined by a 
spectrophotometer (UV-2550, Shimadzu, Japan) at 663, 646 
and 470 nm, respectively (Wellburn, 1994).

Measurement of photosynthesis parameters. All assess-
ments of net photosynthetic rate were tested using a portable 
photosynthesis system (LI-6400; Licor, Lincoln, NB, USA) 
mounted with a red LED light source (6400-02B, Licor). The 
diurnal variations of photosynthesis parameters were mea-
sured as follows. On a cloudless, sunny day, the net photo-
synthetic rate, stomatal conductance, and transpiration rate 
were successively measured with an interval of 2 h in a diurnal 
course from 08:00 to 14:00 h. Photosynthetic active radiation, 
air temperature, leaf temperature, block temperature, relative 
humidity, CO2 concentration in the air, and vapor pressure 
deficit were also automatically recorded. Measurements were 
obtained on the main functional leaf of the stem on five se-
lected plants using three repeats for each study variable, re-
spectively. The measurement of all study variables for one re-
peat was finished within 25 min. 

Inductively coupled plasma-atomic emission spec-
trometry (ICP–AES). Seedlings were harvested after 12 d 
for ICP–AES. The contents of Cd, Ca, Mg, Mn, Fe, and Zn 
were determined after a prior mineralization step by using 
ICP–AES (LEEMAN LABS Inc., NH, U.S.A.) as described 
by Duan (2003). Samples were prepared in accordance with 
the procedure described by Khan et al. (2013) and Liu et al. 
(2008).

Statistical analysis. For each treatment, at least five plants 
were analyzed, and all experiments were repeated for at least 
five times. Results are presented as means ± SD. For statistical 
analysis, one-way ANOVA and t-test were used to determine 
the Least Significant Difference at P<0.05.

RESULTS
Net Cd2+ flux in roots. To detect the spatial dynamics of 

Cd2+ movement along the root tips of the Allium plants, the 
net Cd2+ flux was analyzed by a NMT (non-invasive micro-
test technology, NMT) (Fig. 1b) after Cd exposure for 24 h. 
At the root tips of A. cepa var. agrogarum L., the net Cd2+ flux 
displayed an influx ranging from 34.80 ± 5.36 pmol/cm2/s to 
67.64 ± 8.93 pmol/cm2/s, depending on the distance from the 
root tips (Fig. 1A). The net influx of Cd2+ markedly decreased 
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at 800 µm from the root tips (Fig. 1B). To further analyze the 
temporal dynamics of Cd2+ flux, the average net Cd2+ influx 
at 800, 1200, and 1600 µm from the root tips was monitored. 
The Cd2+ influx at 800 µm to 1600 µm from the root tips 
varied from 57.43 ± 9.74 pmol/cm2/s to 67.64 ± 8.93 pmol/
cm2/s, with the highest net influx recorded at 1200 µm from 
the root tips.

Macroscopic effects of Cd on root growth. The effects 
of Cd on the root growth of the Allium plants varied with 
Cd concentration and treatment time (Figs. 2 and 3). Treat-

Fig. 2. Effect of various concentrations of Cd on root growth of Allium cepa var. agrogarum L. (96 h).
Fig. 2. Efecto de varias concentraciones de Cd en el crecimiento radical de Allium cepa var. agrogarum L. (96 h).

ment with >10 µM Cd inhibited Allium plant root growth, 
whereas that with <10 µM Cd exerted no negative effect on 
root growth. Roots showed a significantly improved growth 
(P<0.05) and normal morphology during the entire treat-
ment with 1 µM Cd. By contrast, they displayed a signifi-
cantly inhibited growth (P<0.05), and stunted and slightly 
bent tips, after 48 h of treatment with 100 µM Cd. After 24 
h of treatment with 300 Cd µM, the roots either grew slowly 
or stopped growing (P<0.05), and the root tips were seriously 
stunted and bent in various directions.
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Fig. 3. Effect of various concentrations of Cd on root length of Al-
lium cepa var. agrogarum L. at various exposure times. Within each 
exposure time, histograms with different letters are significantly dif-
ferent (n=15, P<0.05).
Fig. 3. Efecto de varias concentraciones de Cd en la longitud radi-
cal de Allium cepa var. agrogarum L. después de varios tiempos de 
exposición. Dentro de cada tiempo de exposición, los histogramas 
con diferentes letras son significativamente diferentes (n=15, P<0,05).

Effects of Cd on contents of O2
- and H2O2. The O2– con-

tents in the roots and leaves of the Allium plants varied with 
Cd concentration and treatment duration. The O2– content 
in roots exposed to 1 µM to 300 µM Cd significantly in-
creased (P<0.05) as compared with that in the control (Fig. 
4a). O2– content increased when increasing treatment time, 
and then subsequently decreased within 4 d to 12 d of Cd 
treatment. In addition, the O2– content in the roots induced 
by 300 µM Cd was nearly twice that in the control after 8 
d. The O2– content in the leaves was considerably higher 
than that in the roots (Figs. 4a and 4b). Figure 4b shows 
the effects of different Cd concentrations on the O2– con-
tent of A. cepa var. agrogarum leaves. The O2– level on leaves 
was significantly higher (P<0.05) than that in the control 
from 1 µM to 300 µM Cd after 8 d. After 4 d, the O2– level 
on leaves was not significantly higher than that on roots 
(P>0.05). The activity of O2– on leaves peaked after exposure 
to 300 µM Cd. 
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Fig. 4. Effect of different concentrations of Cd on the activities of O2- and H2O2 in Allium cepa var. agrogarum L. exposed to Cd stress 
over 12 days. (a) O2- in roots, (b) O2- in leaves, (c) H2O2 in roots, (d) H2O2 in leaves. Histograms indicate means ± SE. Different letters on 
the histograms for the same tissue indicate significant differences among treatments (P<0.05, t-test).
Fig. 4. Efecto de diferentes concentraciones de Cd en las actividades del O2- y H2O2 en Allium cepa var. agrogarum expuesta a estrés de Cd 
durante 12 días. (a) O2- en las raíces, (b) O2- en las hojas, (c) H2O2 en las raíces, (d) H2O2 en las hojas. Los histogramas indican promedios ± EE. 
Diferentes letras sobre los histogramas para el mismo tejido indican diferencias significativas entre los tratamientos (P<0,05; t-test).

The effects of different Cd concentrations on H2O2 activ-
ity are shown in Figures 4c and 4d. H2O2 activity showed 
no obvious consistent trend, and was lower on roots after 8 
d of treatment. The changes in root H2O2 activity differed 
from those in root O2– level and leaf H2O2 activity under Cd 
treatment (Fig. 4c). As shown in Fig. 4d, the H2O2 activity 
on leaves exposed to 1 µM and 10 µM Cd was significantly 
higher (P<0.05) that that in the control after 8 d. No evident 
differences in H2O2 activity on leaves were detected after 
treatment with 100 and 300 µM Cd during the entire treat-
ment (Fig. 4d). 

Effects of Cd on photosynthetic pigment concentra-
tions. The photosynthetic pigment concentrations in the Al-
lium plants varied with Cd concentration and treatment du-
ration (Table 1). The photosynthetic pigment concentration 
in the leaves exposed to all Cd concentrations increased with 
treatment duration. The photosynthetic pigment concentra-
tions in the group treated with 300 µM Cd were significantly 
higher (P<0.05) that those in the control and other treatment 
groups. Exposure from 1 µM to 300 µM Cd for 8 d signifi-
cantly increased (P<0.05) the concentrations of Chl a, Chl 
b, and Chl a + b in the leaves as compared with those in the 
control and with each other. The concentrations of Chl a, Chl 
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b, and Chl a + b under exposure from 1 µM to 100 µM Cd 
showed no considerable changes in comparison with the con-
trol after 12 d . However, these concentrations peaked after 
treatment with 300 µM Cd for 12 d [Chl a, 0.719 ± 0.016 
mg/g; Chl b, 0.178 ± 0.003 mg/g; Chl (a + b) 0.897 ± 0.013 
mg/g]. The pigment concentrations on day 8 were 19.5%, 
17.2%, 23.9%, 29.7%, and 42.8% higher than those on day 4 
after exposure to 0, 1, 10, 100, and 300 µM Cd, respectively. 
These concentrations continued to increase with treatment 
duration; an exception to this result was the group treated 
with 300 µM Cd. The pigment concentrations on day 12 were 
51.9%, 26.1%, 15.7%, 9.5%, and 14.9% higher than those on 
day 8.

Table 1 shows that carotenoid concentration increased 
with increasing Cd concentration from 1 µM to 10 µM for 
4 d. The carotenoid concentrations peaked at 10 µM Cd and 

then decreased. The changes in carotenoid concentration after 
8 to 12 d of treatment were similar to those in Chl a and Chl 
b concentrations.

Diurnal changes in photosynthetic characteristics 
Variation in net photosynthetic rate. The net photosynthetic 

rate of Allium functional leaves varied with Cd concentration 
and treatment duration. This rate increased after 4 d to 12 d of 
treatment and thereafter it decreased. Bimodal and unimodal 
diurnal variation patterns of the net photosynthetic rate were 
observed on leaves. The Allium plants exhibited unimodal 
diurnal patterns from 8:00 to 14:00 h (Figs. 5a to 5c), and 
net photosynthetic rates of plants negatively correlated with 
treatment duration. In particular, the net photosynthetic rates 
of Allium plants increased at 08:00 h, gradually decreased with 
time, reached the minimum at 10:00 h, and then evidently 

Fig. 5. Effect of different concentrations (μM) of Cd on diurnal variations of the net photosynthetic rate (Pn), stomatal conductance (Gs), 
and transpiration rate (Tr) in Allium cepa var. agrogarum L. exposed to Cd stress over 12 days. (a) Pn on 4th day, (b) Pn on 8th day, (c) Pn 
on 12th day, (d) Gs on 4th day, (e) Gs on 8th day, (f) Gs on 12th day, (g) Tr on 4th day, (h) Tr on 8th day, (i) Tr on 12th day. Data are the means 
of three replicates with standard errors shown by bars.
Fig. 5. Efecto de diferentes concentraciones (μM) de Cd en la variación diurna de la tasa fotosintética neta (Pn), conductancia estomática (Gs) 
y tasa de transpiración (Tr) en Allium cepa var. agorgarum L. expuesto a estrés por Cd durante 12 días. (a) Pn en el 4to día, (b) Pn en el 8vo día, 
(c) Pn en el 12do día, (d) Gs en el 4to día, (e) Gs en el 8vo día, (f) Gs en el 12do día, (g) Tr en el 4to día, (h) Tr en el 8vo día, (i) Tr en el 12do día. El error 
estándar se muestra como barras verticales. 
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Table 1. Variation of photosynthetic pigment concentrations (mg/g fresh weight) on leaves of Allium cepa variety agrogarum L. which 
were exposed to various CdCl2 concentrations for 4, 8 or 12 days. 
Tabla 1. Variación en la concentración de pigmentos fotosintéticos (mg/g peso fresco) en hojas de Allium cepa var. agrogarum L. que fueron 
expuestas a varias concentraciones de CdCl2 durante 4, 8 ó 12 días.

Time(d) Cd(μM) Chla Chlb Chl(a+b) Car
4 0 0.285 ± 0.004 a 0.060 ± 0.000 a 0.345 ± 0.004 a 0.076 ± 0.005 a

1 0.358 ± 0.004 b 0.074 ± 0.002 b 0.433 ± 0.006 b 0.094 ± 0.001 cd
10 0.391 ± 0.002 c 0.087 ± 0.001 c 0.478 ± 0.003 c 0.098 ± 0.001 d
100 0.419 ± 0.001 d 0.095 ± 0.001 d 0.514 ± 0.001 d 0.090 ± 0.000 b
300 0.438 ± 0.000 e 0.098 ± 0.002 e 0.536 ± 0.002 e 0.092 ± 0.001 b

8 0 0.341 ± 0.005 a 0.076 ± 0.003 a 0.417 ± 0.417 a 0.072 ± 0.004 a
1 0.420 ± 0.020 b 0.098 ± 0.005 b 0.518 ± 0.518 b 0.081 ± 0.003 b
10 0.485 ± 0.006 c 0.120 ± 0.006 c 0.605 ± 0.605 c 0.093 ± 0.002 c
100 0.543 ± 0.032 d 0.133 ± 0.004 d 0.676 ± 0.676 d 0.103 ± 0.008 d
300 0.626 ± 0.008 e 0.154 ± 0.001 e 0.779 ± 0.779 e 0.117 ± 0.001 e

12 0 0.518 ± 0.045 a 0.122 ± 0.012 a 0.640 ± 0.056 a 0.107 ± 0.009 a
1 0.529 ± 0.061 a 0.118±0.012 a 0.648 ± 0.074 a 0.113 ± 0.012 a
10 0.561 ± 0.042 a 0.129 ± 0.008 a 0.690 ± 0.050 a 0.120 ± 0.008 a
100 0.595 ± 0.022 a 0.134 ± 0.003 a 0.729 ± 0.025 a 0.137 ± 0.004 b
300 0.719 ± 0.016 b 0.178 ± 0.003 b 0.897 ± 0.013 b 0.150 ± 0.008 b

Values are means ± SE (P<0.05, n=5). Chla, chlorophyll a; Chlb, chlorophyll b; Chl (a + b), sum of chlorophyll a and b; Car, carotenoid.
Los valores son promedios ± EE (P<0,05; n=5). Chla, clorofilia a; Chlb, clorofilia b; Chl (a + b), suma de lãs clorofilas a y b; Car, carotenoides. 

increased from 10:00 to 12:00 h. After 16:00 h, the net pho-
tosynthetic rate of all materials declined to the lowest level; no 
significant differences in this parameter were detected among 
the different treatments.

Stomatal conductance. Stoma is the channel of carbon di-
oxide exchange for photosynthesis, and the closing or opening 
of this channel affects leaf photosynthesis and transpiration. 
Different from those of the net photosynthetic rate, the peaks 
of stomatal conductance were observed at 10:00 h, with 1.09, 
1.13 (14:00 h), and 1.61 H2O mmol/m2/s of the control af-
ter 4, 8, and 12 d, respectively. In addition, the stomatal con-
ductance of A. cepa var. agrogarum negatively correlated with 
Cd concentration. The minimum stomatal conductance of all 
treatments was observed at 14:00 h and appeared similar to 
the net photosynthetic rate. 

Transpiration rate. The transpiration rate of A. cepa var. 
agrogarum functional leaves varied with Cd concentration and 
treatment duration. The transpiration rate decreased after 4 
d to 12 d of treatment, and then remained consistent with 
the remaining treatment time. In addition, the stomatal con-
ductance of the Allium plants negatively correlated with Cd 
concentration.

Whole-plant toxicity of Cd2+ and ICP test. Exposure of 
the Allium plants to different concentrations of Cd2+ for 12 d 

led to significant Cd2+ concentration in the roots and leaves 
of the Allium plants (Fig. 6a and 6b). As shown in Figures 6a 
and 6b, the Cd concentration significantly increased in roots 
and leaves exposed to Cd in comparison with values in the 
control. In particular, the Cd concentration in roots and leaves 
peaked, with 4435.8 ± 20.2 and 50.5 ± 0.3 µg/g DW, after 12 
d of treatment with 300 µM Cd.

The concentration of Cd in leaves and roots increased with 
increasing Cd concentration in the solutions. The metal was 
largely restricted to roots, with a slight amount being trans-
ported to aerial parts. The Cd concentrations in the leaves 
were 39.9 ± 0.6, 5.7 ± 0.2, and 1.5 ± 0.03 µg/g DW after expo-
sure to 100, 10, and 1 µM, respectively. Meanwhile, the leaf/
root ratios were 0.76%, 0.74%, 1.2%, and 1.1% after exposure 
to 1, 10, 100, and 300 µM Cd, respectively (Fig. 6a and 6b).

The effects of Cd on essential minerals for Allium plants 
are displayed on Fig. 6 in panels c to l. The concentrations of 
Ca in roots and leaves (Fig. 6c and 6d) presented a similar 
trend to those of Zn (Fig. 6k and 6l) after treatment with 
the different concentrations of Cd: the Ca and Zn concen-
trations significantly increased on roots (P<0.05), except for 
the Ca concentration at 1 µM Cd, while they significantly 
decreased (P<0.05) in the leaves (Fig. 6c, 6d, 6k, and 6l) as 
Cd concentrations increased in the nutrient solution. Increas-
ing concentrations of Cd treatments significantly decreased 
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Fig. 6. Concentration of Cd and several minerals in roots and leaves of Allium cepa var. agrogarum L. after treatment with different con-
centrations of Cd2+ for 12 days. (a) Cd in roots, (b) Cd in leaves, (c) Ca in roots, (d) Ca in leaves, (e) Mg in roots, (f) Mg in leaves, (g) Fe in 
roots, (h) Fe in leaves, (i) Mn in roots, (j) Mn in leaves, (k) Zn in roots, (l) Zn in leaves. Vertical bars denote SE. Values with different letters 
differ significantly from each other (P<0.05, t-test).
Fig. 6. Concentración de Cd y varios minerales en raíces y hojas de Allium cepa var. agrogarum después del tratamiento con varias concentraciones 
de Cd2+ por 12 días. (a) Cd en raíces, (b) Cd en hojas, (c) Ca en raíces, (d) Ca en hojas, (e) Mg en raíces, (f) Mg en hojas, (g) Fe en raíces, (h) Fe en 
hojas, (i) Mn en raíces, (j) Mn en hojas, (k) Zn en raíces, (l) Zn en hojas. Las barras verticales son el EE. Los valores con letras diferentes son estadísti-
camente diferentes (P<0,05; t-test).
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Fig. 6. Content of Cd and several minerals in roots and leaves of Allium cepa var. agrogarum L. after treatment with different concentrations of Cd2+ for 
12 days. (a) Cd in roots, (b) Cd in leaves, (c) Ca in roots, (d) Ca in leaves, (e) Mg in roots, (f) Mg in leaves, (g) Fe in roots, (h) Fe in leaves, (i) Mn in roots, 
(j) Mn in leaves, (k) Zn in roots, (l) Zn in leaves. Vertical bars denote SE. Values with different letters differ significantly from each other (P<0.05, t-test).
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tissue Mg and Mn concentrations (P<0.05), except for Mg 
concentration at 10 µM Cd (Figs. 6e, 6f, 6i, and 6j). The Fe 
level significantly increased in roots and leaves with increasing 
Cd concentrations (P<0.05; Fig. 6g and 6h).

DISCUSSION
Strong net Cd2+ influx in roots indicates considerable 

potential for Cd enrichment. In this study, the spatial and 
temporal kinetics of the net Cd2+ flux were examined in the 
roots of A. cepa var. agrogarum L. by using an NMT that is 
highly sensitive to Cd2+ movement (Fig. 1). Previous studies 
applied a similar method to detect Cd2+ flux along the roots 
of monocotyledonous plants (Farrell et al., 2005; Pineros et 
al., 1998). The Cd2+ influx in the roots of wheat (Triticum aes-
tivum cv Grandin) exposed to 50 µM Cd2+ peaks (0.28 pmol 
Cd2+/cm2/s to 0.35 pmol Cd2+/cm2/s) in the region of 0.6 mm 
to 1.2 mm from the root tips (Pineros et al., 1998). Simi-
lar positional effects were observed along the roots of other 
herbaceous plants exposed to Cd stress (Pineros et al., 1998; 
Farrell et al., 2005). In the roots of the dicotyledonous plant 
P. canescens, the Cd2+ influx peaked in the apex region (0 mm 
to 0.9 mm from root tip) (He et al., 2011). However, the use 
of this technique in a common dicotyledonous plant has yet 
to be reported.

These data indicate that the spatial patterns of the net 
Cd2+ flux along the roots are similar in dicotyledonous plants 
but probably different between monocots and dicotyledon-
ous plants. The reason for this trend in net Cd2+ flux remains 
unclear. Further experiments should focus on examining 
whether or not the root anatomy or localization of the Cd2+ 
uptake system varies between these plant groups. Continuous 
increases in Cd concentration in the leaves and roots after 
exposure for 12 d (Fig. 6) suggest that a long period elapses 
for A. cepa var. agrogarum L to reach the saturation of the net 
Cd2+ influx. Moreover, the Allium plants still grew under the 
current experimental conditions. Overall, these data imply 
that A. cepa var. agrogarum L. presents a great potential for Cd 
enrichment.

Cd accumulation impairs tissue-specific oxidative stress 
and photosynthesis of A. cepa var. agrogarum L. Cd is consid-
ered a class 1 human carcinogen by the International Agency 
for Research on Cancer (IARC, 1993). Cd pollution presents 
a significant environmental problem that affects numerous 
physiological and biochemical processes; its effects include 
alterations in photosynthetic rates, photosynthetic pigments, 
chlorophyll fluorescence, and nutrient homeostasis in plants 
(López-Millán, 2009). Plants have developed complex mech-
anisms to minimize the damage from exposure to nonessen-
tial metals (Gallego et al., 2012). In the present investigation, 
the root lengths of A. cepa var. agrogarum L. decreased with 
increasing Cd concentration and prolonging exposure time. 

In addition, treatment with 1 µM Cd promoted root growth. 
This result agrees with previous findings (Liu et al., 2008). 

Under most environmental conditions, Cd2+ initially en-
ters the roots and then it is transported to shoots via xylem 
(Uraguchi et al., 2009). As a result, the root is the first, most 
sensitive and accessible part to Cd2+ toxicity. One of the ma-
jor functions of roots includes nutrient uptake. Heavy metal 
micronutrients, such as Ca, Mg, Fe, Mn, Mo, Ni, and Zn, per-
form essential functions in plant cell growth and development 
(Blomster et al., 2011). To illustrate, Zn is a cofactor of nu-
merous enzymes, through which the metal is involved in pro-
tein binding, enzyme activity mediation, transcriptional and 
translational regulation, and signal transduction (Appenroth, 
2010). Mg and Mn perform similar physiological functions 
in plants. However, the deficiency in essential micronutrients 
due to the increased contents of photosynthetic pigments in-
hibited the photosynthetic efficiency, stomatal conductance, 
and transpiration of A. cepa var. agrogarum L. (P<0.05; Fig. 6 
and Table 1). 

In consideration of the importance of essential micronu-
trients in plant physiology, maintaining homeostasis of these 
heavy metals in plant cells is essential. We propose that Cd2+ 

toxicity is involved in impairing the uptake and transport of 
these nutrient elements, thereby disturbing ion homeostasis in 
vascular plants. Cd chemically resembles Zn and Fe. To date, 
a Cd-specific influx transporter has yet to be found in plant 
cells. In addition, the uptake of Cd is likely to occur through 
available metal uptake ZIP transporters (or alike) that present 
high specific transport affinity for Zn or Fe but low affinity for 
Cd (Korshunova et al., 1999; Pence et al., 2000). Thus, the up-
take of Cd in root cells appears to be an opportunistic event. 
The family of NRAMP (natural resistance-associated macro-
phage proteins) metal ion transporters represents another im-
portant group of transmembrane proteins involved in metal 
transport and homeostasis. These transporters are expressed in 
both roots and shoots, and are considered to be “general metal 
ion transporters” because of their capability to transport Mn2+, 
Zn2+, Cu2+, Fe2+, Cd2+, Ni2+, and Co2+ (Nevo & Nelson, 2006). 
These transporters may explain the mechanism by which Cd2+ 

is absorbed and concentrated in roots of A. cepa var. agrogarum 
L., and the reason why the concentration of Zn and Fe in the 
roots is proportional to the increase in Cd concentration. In 
particular, Cd2+ uptake occurs through transmembrane carri-
ers engaged in the uptake of Ca2+, Fe2+, Mg2+, Cu2+, and Zn2+ 
(Clemens, 2006; Roth et al., 2006). Several of these metals 
can inhibit Cd uptake from the rhizospheric solution and Cd 
accumulation in plant roots (Cataldo et al., 1983; Costa & 
Morel, 1993; Hart et al., 2002; Zhao et al., 2002, 2006). Ca 
levels affect Cd uptake because Cd competes with Ca for Ca 
channels (Perfus-Barbeoch et al., 2002; Wojas et al., 2007). Li 
et al. (2012) indicated that Cd may permeate the channels and 
bind transiently to a site in the pore, reversibly obstructing the 
passage of Ca2+. Zn and Cd most possibly cross the plasma 
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membrane via members of the ZIP transporter family (ZRT-
IRT-like protein; Zinc-regulated transporter, Iron-regulated 
transporter protein). Zn excess often evokes an Fe-deficiency 
response, with the induced expression of Fe uptake transport-
ers such as IRT1. This route could explain the similar changes 
in the contents of Ca, Zn, and Fe to Cd.

The accumulation of O2
– and H2O2 in the roots and leaves 

of Cd-treated Allium plants indicates that Cd exposure leads to 
oxidative stress, as reported in several studies (Schutzendubel 
et al., 2001, 2002; Schutzendubel & Polle, 2002; Romero-
Puertas et al., 2004; Garnier et al., 2006; Rodriguez-Serrano 
et al., 2006, 2009). Our data suggest that Allium roots, which 
showed considerable Cd accumulation, presented strong O2

– 
and H2O2 accumulation. In contrast to roots, leaves accumu-
lated comparatively lower Cd (Fig. 6). However, the two or-
gans presented similar changes in the levels of O2

– and H2O2 
(Fig. 4). As is well-known, ROS perform a dual function in 
metal stress response. That is, ROS act both as oxidative mol-
ecules, aggressively reacting with cellular macromolecules, 
and as signal transduction molecules (Sandalio et al., 2012). 
For example, H2O2 overproduction leads to serious oxidative 
damage, and thus threatens cellular function. However, H2O2 
is also an important signaling molecule that regulates plant 
development, hormone signaling, programmed cell death, and 
stress response and tolerance (Matilla-Vazquez & Matilla, 
2012). Thus, controlling ROS generation in plant cells dur-
ing metal exposure is important to maintain developmental 
processes and general stress responses. ROS levels substan-
tially rise in heavy metal-sensitive plant species if sufficient 
antioxidant enzymes are unavailable. In consequence, ROS-
induced cellular damage induces local programmed cell death, 
and generally affects plant growth and development. For ex-
ample, Cd-induced ROS generation can activate auxin oxi-
dase, which degrades auxin, and change the auxin-regulated 
morphogenetic response in Arabidopsis thaliana rosette leaves 
(Blomster et al., 2011; Elobeid & Polle, 2012). The effect 
of this phenomenon on photosynthesis includes restraining 
photosystem II (PSII) activity, inhibiting PSII photoreaction, 
lowering photophosphorylation, reducing the activity of chlo-
roplast enzymes RuBPC and phosphoribulokinase, decreas-
ing photosynthetic pigments (e.g., total chlorophyll content 
and Chl a/b ratio), diminishing net photosynthesis in leaves, 
and reducing chloroplast metabolism (Clijsters et al., 1985).

Our results showed that the photosynthetic efficiency, sto-
matal conductance, and transpiration of A. cepa var. agrogarum 
L. correlated negatively with Cd concentration and were sig-
nificantly inhibited (P < 0.05). In addition, the results of the 
present study are consistent with previous reports (Greger & 
Ögren, 1991; Krupa et al., 1993; Ciscato et al., 1999; Larbi et 
al., 2002). Finally, Cd induced the production of H2O2, which 
acts as a signaling molecule to trigger the expression of the 
WRKY75, Zat11, and NAM transcription factors that stimu-
late programmed cell death in plants (Gechev & Hille, 2005). 

Large amounts of toxic metals enter plant cells, which pos-
sess no sufficient mechanisms to detoxify these metals. Thus, 
excess metals induce ROS accumulation, which further nega-
tively influences plant growth and development, suppresses 
photosynthesis, damages nucleic acids and proteins, enhances 
programmed cell death, and induces senescence.
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